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The Problem

� Each of p laboratories makes repeated mea-

surements of m materials.

� The number of measurements made can

di�er among the laboratories, but each

material is measured the same number of

times by each laboratory.

� The within-laboratory variances can di�er.

� The selected laboratories can be regarded

as a random sample from an in�nite pop-

ulation of laboratories.

How should one estimate `consensus'

values for the quantities measured, and

what are the uncertainty in this esti-

mates?



Example : Dietary Fiber

Li and Cardozo (1994)

J. Of AOAC Int., 77, p. 689

Nine labs each measures �ber in six foods, in

blind duplicates.

Sample Laboratory

1 2 � � � 9
Apples 12.44 12.87 � � � 12.08

12.48 13.20 � � � 12.38
Apricots 25.05 27.16 � � � 25.31

25.58 26.29 � � � 25.43
... ... ... � � � ...
FIBRIM 74.07 76.55 � � � 73.96

75.01 78.36 � � � 74.24



Hierarchical Model With Noninformative

Priors: Two-Way Model

i = 1; : : : ; p indexes laboratories

j = 1; : : : ; ni indexes measurements

k = 1; : : : ;m indexes materials

xijk = �k + �i+ eijk

independent �i � N(0; �2), eijk � N(0; �2i ):

p(xijkjÆi; �k; �2i ) = N(Æi+ �k; �
2
i );

p(�i) / 1=�i;

p(Æij�; �2) = N(�; �2);

p(�k) = 1;

can handle

p(�i) / �
�i
i



Posterior of (f�kg; �)

Let T� and Z denote independent Student-t

and standard normal random variables, and

assume that  � 0 and � > 0. Then

U = T� + Z

s
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The posterior of (f�kg; �) is
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Given � = 0, the posterior distribution of the

consensus means �k is proportional to a prod-

uct of scaled t-densities:

p(�kjfxijkg; � = 0) /
pY

i=1

1

ti
T 0ni�1

 
�xi�k � �

ti

!
:

These densities reect uncertainties in �k.

In the general case the posterior is propor-

tional to the product of the appropriate gen-

eralized (symmetric) t-densities, centered at

each lab average �xi.



Matrix Formulation

A matrix formulation of the model: the ith

laboratory repeats its vector measurements

ni times, the m-dimensional data fxijg for

i = 1; : : : ; p and j = 1; : : : ; ni follow a two-way

MANOVA model, which may be both unbal-

anced and heteroscedastic

xij = �+ �i+ eij

independent �i � Nm(0; �2eTe), eij � Nm(0;�i);

j = 1; : : : ; ni.

Here eTe is a covariance matrix (of rank one),

and �2 is the unknown variance; � represents

unknown m-dimensional common to all lab-

oratories mean; �2
i and �2 are the nuisance

parameters.



A more general model,

xij = Bi[�+ �i] + eij;

independent �i � Nm(0; �2�) eij � Nmi(0;�i):

The design matrices Bi have sizes mi � m,

the known m � m matrix � may have rank

smaller than m, and � represents unknown m-

dimensional structural parameter common to

all laboratories.

The covariance matrices �i of size mi � mi

and the unknown variance �2 are the nuisance

parameters.

This model allows for the situation when some

of the laboratories do not perform measure-

ments on all components of �, but rank (Bi) �
m.

For simpli�cation in this talk Bi � I.



The statistics xi =
Pni
j=1 xij=ni, Si =

Pni
j=1(xij�

xi)
T (xij � xi)=�i are suÆcient.

The generalized m-dimensional t-distribution

with density f� (u;	) is that of the sum

U = V� + Z

where independent Z � Nm(0;	) and V has

the density proportional to

h
1 + vT � v

i
�(m+�)=2

The posterior of (�; �) is

p(�; �jfxijg)

/ p(�)
pY

i=1

1

jTij
f�i

�
T�1i (xi � �); 2�2T�2i �

�
:

The same interpretation.



Likelihood Analysis

Put

!i =

"
1

ni
�i+ �2�

#
�1

:

The loglikelihood function can be written in

the form

�2`=X
i

(xi � �)T!i(xi � �)�X
i

log j!ij

+
pX

i=1

�i log j�ij+
pX

i=1

�itr (�
�1
i Si) + C:

Local extreme points are possible. Cochran

(1937), (1954), (1980). Vangel and Rukhin

(1999)

The MLE of � has the form

�̂ =

2
4 pX
i=1

!i

3
5�1 pX

i=1

!ixi:



When �i and � are given, �̂ gives the optimal

estimator of � in the sense that it minimizes

the sum of the mean squared errors

E(~x� �)(~x� �)T

within the class of unbiased \linear estima-

tors" ~x of �, ~x =
P
iAixi with some matrices

Ai. Thus it generalizes the classical weighted

means statistics used when m = 1.

Extension of Mandel-Paule Method

Even without the normality assumption (only

under existence of second moments) one has

for �̂

E(xi � �̂)(xi � �̂)T = !�1i �
2
4 pX
k=1

!k

3
5�1 :

E(xi � �̂)T!i(xi � �̂) is a scalar,
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= mp�m = m(p� 1):

This identity can be used as the estimating

equation for � and �2, provided that �i are

estimated by Si.

This method consists in restricting the class

of estimators of !i to those of the form [n�1i Si+

y�]�1 for some positive y. With the \weights"

wi = wi(y) = [n�1i Si+ y�]�1;



an estimator of � from this class has the rep-

resentation

x̂= x̂(y) =

2
4 pX
i=1

wi

3
5�1 pX

i=1

wixi:

The suggestion is to select the estimator out

of this class, i.e. to choose y, which is de-

signed to estimate �2, as the solution of the

equation

pX
i=1

(xi � x̂)Twi(y)(xi � x̂) = m(p� 1): (1)

A direct analogue of the Mandel-Paule algo-

rithm widely used at NIST in the case m = 1.

This is an easily implementable method sug-

gested by Mandel and Paule (1970), Paule

and Mandel (1982). It is known often to pro-

vide reasonable estimates. Schiller and Eber-

hardt (1992)- a discussion of this method as

used in the preparation of standard reference

materials.



This extension of the Mandel-Paule rule pro-

vides the estimate x̂ of the common parame-

ter � along with the estimate y of �2.

Properties:

� the Mandel-Paule rule is well de�ned, i.e.

(1) has at most one positive solution;

� The left-hand side of (1) is a monotoni-

cally decreasing convex function.

Interpretation: an \approximate" version of

the maximum likelihood estimator (or rather

of the restricted maximum likelihood estima-

tor)

pX
i=1

(xi � x̂)Twi(y)(xi � x̂) = mp

This can be obtained from reparametrization

of likelihood equation by estimating �i by Si,



which leads to the maximum likelihood esti-

mate of �2 of the form

�̂2 �

y

Pp
i=1(xi � �̂)T

�
n�1i Si+ y�

�
�1

(xi � �̂) + n�mp

n
:

Thus the Mandel-Paule rule is characterized

by the following fact:

�̂2 � y:

Rukhin and Vangel (1998)

To obtain a con�dence set for � assume that p

is large. Under some conditions x̂ has approxi-

matelym-dimensional normal distribution with

mean � and the covariance matrix which can

be estimated by

� =
1

p

2
4 pX
i=1

wi

3
5�1

2
4 pX
i=1

wi(xi � x̂)(xi � x̂)Twi

3
5
2
4 pX
i=1

wi

3
5�1 :



Provided � is nonsingular, one obtains an ap-

proximate (1� �)-con�dence ellipsoid for �,n
� : (x̂� �)T��1(x̂� �) � �2�(m)

o
;

�2�(m) - �-critical point for the �
2� distribu-

tion with m degrees of freedom.

The method extends to the situation whenP
i !i may be non-invertible, as with

hPp
i=1 !i

i
�

denoting the Moore-Penrose pseudoinverse,

�̂ =

2
4 pX
i=1

!i

3
5� pX

i=1

!ixi;

and

E(xi � �̂)(xi � �̂)T = !�i �
2
4 pX
k=1

!k

3
5� :

Then the equation (1) is to be re[placed by

pX
i=1

(xi � x̂)Twi(y)(xi � x̂) = mp� q

with q = rank
�Pp

k=1 !k
�
.



Dietary Fiber in Apricots

Lab. xi s2i ni
1 25.32 0.37 2
2 26.72 0.62 2
3 27.89 0.35 2
4 27.70 1.85 2
5 27.42 0.61 2
6 24.30 0.21 2
7 27.11 0.37 2
8 27.28 0.09 2
9 25.37 0.08 2

Mean: �x= 26:567

Weighted Means:

MP = 26:472
ANOVA = 26:420

MLE = 27:275


